Nodejs cluster 模块深入探究

Nodejs cluster 模块深入探究

2017/08/16 · 基础技术 ·
2 评论 ·
NodeJS

本文作者: 伯乐在线 –
欲休
。未经作者许可,禁止转载!
欢迎加入伯乐在线 专栏作者。

### 由表及里
HTTP服务器用于响应来自客户端的请求,当客户端请求数逐渐增大时服务端的处理机制有多种,如tomcat的多线程、nginx的事件循环等。而对于node而言,由于其也采用事件循环和异步I/O机制,因此在高I/O并发的场景下性能非常好,但是由于单个node程序仅仅利用单核cpu,因此为了更好利用系统资源就需要fork多个node进程执行HTTP服务器逻辑,所以node内建模块提供了child_process和cluster模块。
利用childprocess模块,我们可以执行shell命令,可以fork子进程执行代码,也可以直接执行二进制文件;利用cluster模块,使用node封装好的API、IPC通道和调度机可以非常简单的创建包括一个master进程下HTTP代理服务器 + 多个worker进程多个HTTP应用服务器的架构,并提供两种调度子进程算法。本文主要针对cluster模块讲述node是如何实现简介高效的服务集群创建和调度的。那么就从代码进入本文的主题:code1**

const cluster = require(‘cluster’); const http = require(‘http’); if
(cluster.isMaster) { let numReqs = 0; setInterval(() => {
console.log(<code>numReqs = ${numReqs}</code>); }, 1000);
function messageHandler(msg) { if (msg.cmd && msg.cmd ===
‘notifyRequest’) { numReqs += 1; } } const numCPUs =
require(‘os’).cpus().length; for (let i = 0; i < numCPUs; i++) {
cluster.fork(); } for (const id in cluster.workers) {
cluster.workers[id].on(‘message’, messageHandler); } } else { //
Worker processes have a http server. http.Server((req, res) => {
res.writeHead(200); res.end(‘hello worldn’); process.send({ cmd:
‘notifyRequest’ }); }).listen(8000); }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
const cluster = require(‘cluster’);
const http = require(‘http’);
 
if (cluster.isMaster) {
 
  let numReqs = 0;
  setInterval(() => {
    console.log(<code>numReqs = ${numReqs}</code>);
  }, 1000);
 
  function messageHandler(msg) {
    if (msg.cmd && msg.cmd === ‘notifyRequest’) {
      numReqs += 1;
    }
  }
 
  const numCPUs = require(‘os’).cpus().length;
  for (let i = 0; i < numCPUs; i++) {
    cluster.fork();
  }
 
  for (const id in cluster.workers) {
    cluster.workers[id].on(‘message’, messageHandler);
  }
 
} else {
 
  // Worker processes have a http server.
  http.Server((req, res) => {
    res.writeHead(200);
    res.end(‘hello worldn’);
 
    process.send({ cmd: ‘notifyRequest’ });
  }).listen(8000);
}

主进程创建多个子进程,同时接受子进程传来的消息,循环输出处理请求的数量;
子进程创建http服务器,侦听8000端口并返回响应。
泛泛的大道理谁都了解,可是这套代码如何运行在主进程和子进程中呢?父进程如何向子进程传递客户端的请求?多个子进程共同侦听8000端口,会不会造成端口reuse
error?每个服务器进程最大可有效支持多少并发量?主进程下的代理服务器如何调度请求?
这些问题,如果不深入进去便永远只停留在写应用代码的层面,而且不了解cluster集群创建的多进程与使用child_process创建的进程集群的区别,也写不出符合业务的最优代码,因此,深入cluster还是有必要的。
## cluster与net
cluster模块与net模块息息相关,而net模块又和底层socket有联系,至于socket则涉及到了系统内核,这样便由表及里的了解了node对底层的一些优化配置,这是我们的思路。介绍前,笔者仔细研读了node的js层模块实现,在基于自身理解的基础上诠释上节代码的实现流程,力图做到清晰、易懂,如果有某些纰漏也欢迎读者指出,只有在互相交流中才能收获更多。
### 一套代码,多次执行
很多人对code1代码如何在主进程和子进程执行感到疑惑,怎样通过_cluster.isMaster
判断语句内的代码是在主进程执行,而其他代码在子进程执行呢?
其实只要你深入到了node源码层面,这个问题很容易作答。cluster模块的代码只有一句:

module.exports = (‘NODE<em>UNIQUE_ID’ in process.env) ?
require(‘internal/cluster/child’) :
require(‘internal/cluster/master’);</em>

1
2
3
module.exports = (‘NODE<em>UNIQUE_ID’ in process.env) ?
                  require(‘internal/cluster/child’) :
                  require(‘internal/cluster/master’);</em>

只需要判断当前进程有没有环境变量“NODE_UNIQUE_ID”就可知道当前进程是否是主进程;而变量“NODE_UNIQUE_ID”则是在主进程fork子进程时传递进去的参数,因此采用cluster.fork创建的子进程是一定包含“NODE_UNIQUE_ID”的。
这里需要指出的是,必须通过cluster.fork创建的子进程才有NODE_UNIQUE_ID变量,如果通过child_process.fork的子进程,在不传递环境变量的情况下是没有NODE_UNIQUE_ID的。因此,当你在child_process.fork的子进程中执行cluster.isMaster判断时,返回
true。
### 主进程与服务器
code1中,并没有在cluster.isMaster的条件语句中创建服务器,也没有提供服务器相关的路径、端口和fd,那么主进程中是否存在TCP服务器,有的话到底是什么时候怎么创建的?
相信大家在学习nodejs时阅读的各种书籍都介绍过在集群模式下,主进程的服务器会接受到请求然后发送给子进程,那么问题就来到主进程的服务器到底是如何创建呢?主进程服务器的创建离不开与子进程的交互,毕竟与创建服务器相关的信息全在子进程的代码中。
当子进程执行

http.Server((req, res) => { res.writeHead(200); res.end(‘hello
worldn’); process.send({ cmd: ‘notifyRequest’ }); }).listen(8000);

1
2
3
4
5
6
http.Server((req, res) => {
    res.writeHead(200);
    res.end(‘hello worldn’);
 
    process.send({ cmd: ‘notifyRequest’ });
  }).listen(8000);

时,http模块会调用net模块(确切的说,http.Server继承net.Server),创建net.Server对象,同时侦听端口。创建net.Server实例,调用构造函数返回。创建的net.Server实例调用listen(8000),等待accpet连接。那么,子进程如何传递服务器相关信息给主进程呢?答案就在listen函数中。我保证,net.Server.prototype.listen函数绝没有表面上看起来的那么简单,它涉及到了许多IPC通信和兼容性处理,可以说HTTP服务器创建的所有逻辑都在listen函数中。
>
延伸下,在学习linux下的socket编程时,服务端的逻辑依次是执行socket(),bind(),listen()和accept(),在接收到客户端连接时执行read(),write()调用完成TCP层的通信。那么,对应到node的net模块好像只有listen()阶段,这是不是很难对应socket的四个阶段呢?其实不然,node的net模块把“bind,listen”操作全部写入了net.Server.prototype.listen中,清晰的对应底层socket和TCP三次握手,而向上层使用者只暴露简单的listen接口。
code2

Server.prototype.listen = function() { … // 根据参数创建 handle句柄
options = options._handle || options.handle || options; // (handle[,
backlog][, cb]) where handle is an object with a handle if (options
instanceof TCP) { this._handle = options; this[async_id_symbol] =
this._handle.getAsyncId(); listenInCluster(this, null, -1, -1,
backlogFromArgs); return this; } … var backlog; if (typeof
options.port === ‘number’ || typeof options.port === ‘string’) { if
(!isLegalPort(options.port)) { throw new RangeError(‘”port” argument
must be >= 0 and < 65536’); } backlog = options.backlog ||
backlogFromArgs; // start TCP server listening on host:port if
(options.host) { lookupAndListen(this, options.port | 0, options.host,
backlog, options.exclusive); } else { // Undefined host, listens on
unspecified address // Default addressType 4 will be used to search for
master server listenInCluster(this, null, options.port | 0, 4, backlog,
undefined, options.exclusive); } return this; } … throw new
Error(‘Invalid listen argument: ‘ + util.inspect(options)); };

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
Server.prototype.listen = function() {
 
  …
 
  // 根据参数创建 handle句柄
  options = options._handle || options.handle || options;
  // (handle[, backlog][, cb]) where handle is an object with a handle
  if (options instanceof TCP) {
    this._handle = options;
    this[async_id_symbol] = this._handle.getAsyncId();
    listenInCluster(this, null, -1, -1, backlogFromArgs);
    return this;
  }
 
  …
 
  var backlog;
  if (typeof options.port === ‘number’ || typeof options.port === ‘string’) {
    if (!isLegalPort(options.port)) {
      throw new RangeError(‘"port" argument must be >= 0 and < 65536’);
    }
    backlog = options.backlog || backlogFromArgs;
    // start TCP server listening on host:port
    if (options.host) {
      lookupAndListen(this, options.port | 0, options.host, backlog,
                      options.exclusive);
    } else { // Undefined host, listens on unspecified address
      // Default addressType 4 will be used to search for master server
      listenInCluster(this, null, options.port | 0, 4,
                      backlog, undefined, options.exclusive);
    }
    return this;
  }
 
  …
 
  throw new Error(‘Invalid listen argument: ‘ + util.inspect(options));
};

由于本文只探究cluster模式下HTTP服务器的相关内容,因此我们只关注有关TCP服务器部分,其他的Pipe(domain
socket)服务不考虑。
listen函数可以侦听端口、路径和指定的fd,因此在listen函数的实现中判断各种参数的情况,我们最为关心的就是侦听端口的情况,在成功进入条件语句后发现所有的情况最后都执行了listenInCluster函数而返回,因此有必要继续探究。
code3

function listenInCluster(server, address, port, addressType, backlog,
fd, exclusive) { … if (cluster.isMaster || exclusive) {
server._listen2(address, port, addressType, backlog, fd); return; } //
后续代码为worker执行逻辑 const serverQuery = { address: address, port:
port, addressType: addressType, fd: fd, flags: 0 }; …
cluster._getServer(server, serverQuery, listenOnMasterHandle); }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
function listenInCluster(server, address, port, addressType,
                         backlog, fd, exclusive) {
 
  …
 
  if (cluster.isMaster || exclusive) {
    server._listen2(address, port, addressType, backlog, fd);
    return;
  }
 
  // 后续代码为worker执行逻辑
  const serverQuery = {
    address: address,
    port: port,
    addressType: addressType,
    fd: fd,
    flags: 0
  };
 
  …
 
  cluster._getServer(server, serverQuery, listenOnMasterHandle);
}

listenInCluster函数传入了各种参数,如server实例、ip、port、ip类型(IPv6和IPv4)、backlog(底层服务端socket处理请求的最大队列)、fd等,它们不是必须传入,比如创建一个TCP服务器,就仅仅需要一个port即可。
简化后的listenInCluster函数很简单,cluster模块判断当前进程为主进程时,执行_listen2函数;否则,在子进程中执行cluster._getServer函数,同时像函数传递serverQuery对象,即创建服务器需要的相关信息。
因此,我们可以大胆假设,子进程在cluster._getServer函数中向主进程发送了创建服务器所需要的数据,即serverQuery。实际上也确实如此:
code4

cluster._getServer = function(obj, options, cb) { const message =
util._extend({ act: ‘queryServer’, index: indexes[indexesKey], data:
null }, options); send(message, function modifyHandle(reply, handle)
=> { if (typeof obj._setServerData === ‘function’)
obj._setServerData(reply.data); if (handle) shared(reply, handle,
indexesKey, cb); // Shared listen socket. else rr(reply, indexesKey,
cb); // Round-robin. }); };

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
cluster._getServer = function(obj, options, cb) {
 
  const message = util._extend({
    act: ‘queryServer’,
    index: indexes[indexesKey],
    data: null
  }, options);
 
  send(message, function modifyHandle(reply, handle) => {
    if (typeof obj._setServerData === ‘function’)
      obj._setServerData(reply.data);
 
    if (handle)
      shared(reply, handle, indexesKey, cb);  // Shared listen socket.
    else
      rr(reply, indexesKey, cb);              // Round-robin.
  });
 
};

子进程在该函数中向已建立的IPC通道发送内部消息message,该消息包含之前提到的serverQuery信息,同时包含act:
‘queryServer’
字段,等待服务端响应后继续执行回调函数modifyHandle。
主进程接收到子进程发送的内部消息,会根据act:
‘queryServer’
执行对应queryServer方法,完成服务器的创建,同时发送回复消息给子进程,子进程执行回调函数modifyHandle,继续接下来的操作。
至此,针对主进程在cluster模式下如何创建服务器的流程已完全走通,主要的逻辑是在子进程服务器的listen过程中实现。
### net模块与socket
上节提到了node中创建服务器无法与socket创建对应的问题,本节就该问题做进一步解释。在net.Server.prototype.listen函数中调用了listenInCluster函数,listenInCluster会在主进程或者子进程的回调函数中调用_listen2函数,对应底层服务端socket建立阶段的正是在这里。

function setupListenHandle(address, port, addressType, backlog, fd) { //
worker进程中,_handle为fake对象,无需创建 if (this._handle) {
debug(‘setupListenHandle: have a handle already’); } else {
debug(‘setupListenHandle: create a handle’); if (rval === null) rval =
createServerHandle(address, port, addressType, fd); this._handle =
rval; } this[async_id_symbol] = getNewAsyncId(this._handle);
this._handle.onconnection = onconnection; var err =
this._handle.listen(backlog || 511); }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
function setupListenHandle(address, port, addressType, backlog, fd) {
 
  // worker进程中,_handle为fake对象,无需创建
  if (this._handle) {
    debug(‘setupListenHandle: have a handle already’);
  } else {
    debug(‘setupListenHandle: create a handle’);
 
    if (rval === null)
      rval = createServerHandle(address, port, addressType, fd);
 
    this._handle = rval;
  }
 
  this[async_id_symbol] = getNewAsyncId(this._handle);
 
  this._handle.onconnection = onconnection;
 
  var err = this._handle.listen(backlog || 511);
 
}

通过createServerHandle函数创建句柄(句柄可理解为用户空间的socket),同时给属性onconnection赋值,最后侦听端口,设定backlog。
那么,socket处理请求过程“socket(),bind()”步骤就是在createServerHandle完成。

function createServerHandle(address, port, addressType, fd) { var
handle; // 针对网络连接,绑定地址 if (address || port || isTCP) { if
(!address) { err = handle.bind6(‘::’, port); if (err) { handle.close();
return createServerHandle(‘0.0.0.0’, port); } } else if (addressType ===
6) { err = handle.bind6(address, port); } else { err =
handle.bind(address, port); } } return handle; }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
function createServerHandle(address, port, addressType, fd) {
  var handle;
 
  // 针对网络连接,绑定地址
  if (address || port || isTCP) {
    if (!address) {
      err = handle.bind6(‘::’, port);
      if (err) {
        handle.close();
        return createServerHandle(‘0.0.0.0’, port);
      }
    } else if (addressType === 6) {
      err = handle.bind6(address, port);
    } else {
      err = handle.bind(address, port);
    }
  }
 
  return handle;
}

在createServerHandle中,我们看到了如何创建socket(createServerHandle在底层利用node自己封装的类库创建TCP
handle),也看到了bind绑定ip和地址,那么node的net模块如何接收客户端请求呢?
必须深入c++模块才能了解node是如何实现在c++层面调用js层设置的onconnection回调属性,v8引擎提供了c++和js层的类型转换和接口透出,在c++的tcp_wrap中:

void TCPWrap::Listen(const FunctionCallbackInfo& args) { TCPWrap* wrap;
ASSIGN_OR_RETURN_UNWRAP(&wrap, args.Holder(),
args.GetReturnValue().Set(UV_EBADF)); int backloxxg =
args[0]->Int32Value(); int err =
uv_listen(reinterpret_cast(&wrap->handle), backlog, OnConnection);
args.GetReturnValue().Set(err); }

1
2
3
4
5
6
7
8
9
10
11
void TCPWrap::Listen(const FunctionCallbackInfo& args) {
  TCPWrap* wrap;
  ASSIGN_OR_RETURN_UNWRAP(&wrap,
                          args.Holder(),
                          args.GetReturnValue().Set(UV_EBADF));
  int backloxxg = args[0]->Int32Value();
  int err = uv_listen(reinterpret_cast(&wrap->handle),
                      backlog,
                      OnConnection);
  args.GetReturnValue().Set(err);
}

我们关注uvlisten函数,它是libuv封装后的函数,传入了*handle*,backlog和OnConnection回调函数,其中handle_为node调用libuv接口创建的socket封装,OnConnection函数为socket接收客户端连接时执行的操作。我们可能会猜测在js层设置的onconnction函数最终会在OnConnection中调用,于是进一步深入探查node的connection_wrap
c++模块:

template void ConnectionWrap::OnConnection(uv_stream_t* handle, int
status) { if (status == 0) { if (uv_accept(handle, client_handle))
return; // Successful accept. Call the onconnection callback in
JavaScript land. argv[1] = client_obj; }
wrap_data->MakeCallback(env->onconnection_string(),
arraysize(argv), argv); }

1
2
3
4
5
6
7
8
9
10
11
12
13
template
void ConnectionWrap::OnConnection(uv_stream_t* handle,
                                                    int status) {
 
  if (status == 0) {
    if (uv_accept(handle, client_handle))
      return;
 
    // Successful accept. Call the onconnection callback in JavaScript land.
    argv[1] = client_obj;
  }
  wrap_data->MakeCallback(env->onconnection_string(), arraysize(argv), argv);
}

过滤掉多余信息便于分析。当新的客户端连接到来时,libuv调用OnConnection,在该函数内执行uv_accept接收连接,最后将js层的回调函数onconnection[通过env->onconnection_string()获取js的回调]和接收到的客户端socket封装传入MakeCallback中。其中,argv数组的第一项为错误信息,第二项为已连接的clientSocket封装,最后在MakeCallback中执行js层的onconnection函数,该函数的参数正是argv数组传入的数据,“错误代码和clientSocket封装”。
js层的onconnection回调

function onconnection(err, clientHandle) { var handle = this; if (err) {
self.emit(‘error’, errnoException(err, ‘accept’)); return; } var socket
= new Socket({ handle: clientHandle, allowHalfOpen: self.allowHalfOpen,
pauseOnCreate: self.pauseOnConnect }); socket.readable = socket.writable
= true; self.emit(‘connection’, socket); }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
function onconnection(err, clientHandle) {
  var handle = this;
 
  if (err) {
    self.emit(‘error’, errnoException(err, ‘accept’));
    return;
  }
 
  var socket = new Socket({
    handle: clientHandle,
    allowHalfOpen: self.allowHalfOpen,
    pauseOnCreate: self.pauseOnConnect
  });
  socket.readable = socket.writable = true;
 
  self.emit(‘connection’, socket);
}

这样,node在C++层调用js层的onconnection函数,构建node层的socket对象,并触发connection事件,完成底层socket与node
net模块的连接与请求打通。
至此,我们打通了socket连接建立过程与net模块(js层)的流程的交互,这种封装让开发者在不需要查阅底层接口和数据结构的情况下,仅使用node提供的http模块就可以快速开发一个应用服务器,将目光聚集在业务逻辑中。
> backlog是已连接但未进行accept处理的socket队列大小。在linux
2.2以前,backlog大小包括了半连接状态和全连接状态两种队列大小。linux
2.2以后,分离为两个backlog来分别限制半连接SYN_RCVD状态的未完成连接队列大小跟全连接ESTABLISHED状态的已完成连接队列大小。这里的半连接状态,即在三次握手中,服务端接收到客户端SYN报文后并发送SYN+ACK报文后的状态,此时服务端等待客户端的ACK,全连接状态即服务端和客户端完成三次握手后的状态。backlog并非越大越好,当等待accept队列过长,服务端无法及时处理排队的socket,会造成客户端或者前端服务器如nignx的连接超时错误,出现
“error:
Broken
Pipe”**。因此,node默认在socket层设置backlog默认值为511,这是因为nginx和redis默认设置的backlog值也为此,尽量避免上述错误。
###

打赏支持我写出更多好文章,谢谢!

打赏作者

打赏支持我写出更多好文章,谢谢!

图片 1

1 赞 收藏 2
评论

关于作者:欲休

图片 2

前端自由人
个人主页 ·
我的文章 ·
1 ·
 

图片 3

相关文章

发表评论

电子邮件地址不会被公开。 必填项已用*标注

网站地图xml地图